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Abstract. In previous works, Jones and Roberts have studied finite extensions of the p-
adic numbers Qp. In this paper, we extend the results of Jones and Roberts regarding finite
extensions of Qp to the setting of local fields with characteristic p. In particular we are able
to produce analogous results to Jones and Roberts in the case that the characteristic does
not divide the degree of the field extension. Also in this case, following from the work of
Pauli and Roblot, we prove the defining polynomials of these extensions can be written in
a certain form. Furthermore, if p divides the degree of the extension, we show there are
infinitely many extensions of this degree and thus cannot be classified in the same manner.

1. Introduction

Classifying extensions of Qp has been of interest for many years. Pauli and Roblot [14]
describe a method for computing defining polynomials for all extensions of Qp of a given
degree. Jones and Roberts [9] constructed an online database that identifies degree n exten-
sions of Qp for small values of p and n. They describe how to compute various invariants for
each extension, including the Galois group.

In a similar fashion, we extend these results to characteristic p local fields, focusing on
the unramified, totally tamely ramified, and totally wildly ramified cases. We begin by in-
troducing the reader to essential background topics such as Galois theory, local field theory,
the p-adic numbers, the field of formal Laurent series, and ramification groups.

We follow the work of Jones and Roberts [9] in the unramified case. In particular, we rely
on Hensel’s Lemma to show the existence and uniqueness of degree f unramified extensions
with a brief word about the Galois groups of these extensions. We then explore totally
tamely ramified extensions. Here we focus on the class of defining polynomials for these
extensions, namely a specific type of Eisenstein polynomial. This type of polynomial arises
from the work of Pauli and Roblot [14] and is shown to apply to extensions of characteristic
p local fields. In the totally wildly ramified case, our results for degree p extensions are not
analogous to the case of characteristic 0 local fields, as there are infinitely many degree p
extensions. Finally, we conclude with an example, classifying an extension of Fp((T )) to put
our results in context.
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2. Background

2.1. Basic Galois Theory Definitions.

Definition 2.1. Let L/K be a finite field extension. An automorphism of L/K is defined to
be an automorphism of L that fixes the elements of K. That is, an automorphism of L/K
is an isomorphism σ from L to L such that σ(x) = x, for all x ∈ K.

The set of automorphisms form a group under function composition, which is denoted
Aut(L/K).

Definition 2.2. The mass of L/K is defined as m(L) = [L:K]
|Aut(L/K)| . If m(L) = 1, then

L is called a Galois extension and Aut(L/K) is called the Galois group of L, denoted
Gal(L/K).

The following statements are equivalent:

• L/K is a Galois extension;
• L/K is a normal and separable extension;
• L is the splitting field of a separable polynomial with coefficients in K;
• [L : K] = |Aut(L/K)|.

For more information on Galois theory and field theory, see [6].

2.2. Local Fields.

In order to define a local field, we first introduce the following concepts.

Definition 2.3. Given a field F , a function | · | : F → R≥0 is called an absolute value if
for all x, y ∈ F we have:

(1) |x| ≥ 0 where equality holds if and only if x = 0,
(2) |xy| = |x||y|,
(3) |x+ y| ≤ |x|+ |y|.

Example 2.4. The usual absolute value on the real numbers has the above properties.

Example 2.5. The Euclidean distance for x = (x1, x2, ..., xn) ∈ Rn, which is defined as

|x| =
√
x2

1 + x2
2 + ...+ x2

n, is an absolute value on Rn.

Example 2.6. We can define additional absolute values on the rational numbers Q. Given
a prime number p and a rational number x = pmr

s
where m, r, s ∈ Z and r, s are coprime to

p, we define a function on the rational numbers to be |x|p = p−m where |0|p = 0. This
function is called the p-adic absolute value. To check if this function is indeed an absolute
value, we must check that properties (1)-(3) hold. Clearly, |x| ≥ 0 regardless of the value of
m. Thus (1) is satisfied. To see (2), let x = pm1 r1

s1
and let y = pm2 r2

s2
be elements of Q. Then

|xy|p =

∣∣∣∣pm1
r1

s1

pm2
r2

s2

∣∣∣∣
p

=

∣∣∣∣pm1+m2
r1r2

s1s2

∣∣∣∣
p

= p−m1−m2 = p−m1p−m2 =

∣∣∣∣pm1
r1

s1

∣∣∣∣
p

∣∣∣∣pm2
r2

s2

∣∣∣∣
p

= |x|p|y|p.
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To check that (3) holds, let x, y be defined as above. Assume without loss of generality
that |x|p ≥ |y|p. This implies that m1 ≤ m2. Then

|x+ y|p =

∣∣∣∣pm1
r1

s1

+ pm2
r2

s2

∣∣∣∣
p

=

∣∣∣∣pm1r1s2 + pm2r2s1

s1s2

∣∣∣∣
p

=

∣∣∣∣pm1 r1s2 + pm2−m1r2s1

s1s2

∣∣∣∣
p

≤ p−m1 =

∣∣∣∣pm1
r1

s1

∣∣∣∣
p

= |x|p

which we assumed was equal to the maximum of {|x|p, |y|p} and thus
|x+ y|p ≤ |x|p ≤ |x|p + |y|p and property (3) holds. Therefore, the function | · |p is an
absolute value.

Note that for property (3), a stronger condition holds. The absolute value is said to be
non-Archimedean if it satisfies this stronger condition that |x+ y| ≤ max{|x|, |y|} for all
x, y in a field F . The usual absolute value and the Euclidean distance do not satisfy this
additional property, but clearly the p-adic absolute value does, so we call it a
non-Archimedean absolute value.

Definition 2.7. A valuation on a field F is a function ν : F → R ∪ {∞} such that

(1) ν(x) =∞ if and only if x = 0,
(2) ν(xy) = ν(x) + ν(y),
(3) ν(x+ y) ≥ min{ν(x), ν(y)}.

We say ν is a discrete valuation if ν : F → Z ∪ {∞}. This function behaves on a
non-Archimedean absolute value as a logarithm behaves on an exponential function. In
terms of the p-adic absolute value and a rational number x = pmr

s
, p - rs, we have

νp(x) = m and |x|p = p−νp(x).

In this sense, the p-adic valuation provides a measure of how divisible the element is by the
prime p. Although the focus of this project is on local fields equipped with a slightly
different absolute value, a basic understanding of the p-adic absolue value is essential in
what follows. For more information on the p-adic numbers, see [8].

Definition 2.8. Suppose R is a commutative ring and m is its maximal ideal. The
residue field of R is the quotient ring R/m.

Let K be a field with valuation νK . Then we define the ring of integers

OK = {x ∈ K|νK(x) ≥ 0}.
Note that K is the field of fractions of OK . Within OK , we have

UK = {x ∈ K|νk(x) = 0},
and

MK = {x ∈ K|νk(x) > 0}.

Theorem 2.9. MK is the unique maximal ideal of OK , and UK is the group of units.
3



Proof. Let ν represent νK . First, we show that MK is an ideal. Let x, y ∈MK . Then,
ν(x+ y) ≥ min{ν(x), ν(y)} > 0, hence x+ y ∈MK . If x ∈ OK and y ∈MK , then
ν(xy) = ν(x) + ν(y) > 0 and xy ∈MK . Thus it follows that MK is an ideal.
We next show that UK = OK −MK consists of all the units of OK , thereby proving that
MK is the unique maximal ideal of OK since for MK to be larger, it would include a unit
which would automatically make it equal to OK . For this, let x ∈ UK . Then the identity
element 1K ∈ UK since ν(1K) = 0 so all that remains to be shown is the existence of
inverses. Since x ∈ UK , the there exists x−1 ∈ K such that ν(x−1) + ν(x) = ν(1) = 0. Thus
ν(x−1) = 0 and we have x−1 ∈ UK . Thus UK is a group under multiplication. Since each
x ∈ UK has a multiplicative inverse, each x ∈ UK is a unit. We call UK the group of units
and MK the unique maximal ideal. �

Definition 2.10. A local field is a field which is complete with respect to a discrete,
non-Archimedean valuation and whose residue field is finite.

Note that the quotient k = OK/MK is the residue field of K.

Definition 2.11. A principal ideal domain is an integral domain in which every ideal is
generated by a single element. In other words, every ideal is principal.

Theorem 2.12. If νK is discrete then OK is a principal ideal domain.

Proof. Let ν : OK → Z≥0 ∪ {∞} be the discrete valuation restricted to OK . Let I be a
non-zero ideal of OK . Then since Z≥0 is well ordered, we can choose a ∈ I such that ν(a) is
minimum. We claim that I = (a). Let x ∈ I and write ν(x) = ν(a)q + r where q ∈ N and
0 ≤ r < ν(a). Now consider xa−1 ∈ K,

ν(xa−1) = ν(x) + ν(a−1)

= ν(x)− ν(a)

≥ ν(x)− qν(a)

= r ≥ 0

Thus xa−1 ∈ OK and we can fix y = xa−1 ∈ OK . Then x = ay and therefore I = (a) and
OK is a principal ideal domain. �

Since MK ⊂ OK , MK is also principal.

Definition 2.13. A discrete valuation ring is a principal ideal domain with exactly one
non-zero maximal ideal.

Theorem 2.14. OK is a discrete valuation ring.

Proof. This is clear from 2.9 and 2.12. �

Definition 2.15. Any element πK ∈ K which generates MK is called a uniformizer of
K. Note νK(πK) = 1.

Note that all the ideals in K have the form (πjK) for some j. To see this, first recall OK is a
principal ideal domain. Also, recall every non-unit element of OK is an element of MK .
Thus, every ideal is a subset of MK . This requires those ideals to be generated by a power
of πK , the generator of MK .
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Given a field K with an absolute value | · |K and a finite extension L/K of degree n, one
can extend the absolute value of K to a absolute value on L in the following way: for any
x ∈ L,

|x|L = |NL/K(x)|
1
n

where NL/K(x) is a norm from L to K, that is, it maps the elements in L to K in such a
way that the absolute value on K is preserved. There are three ways to compute the norm
from L to K as described in [8, p.145]:

(1) For an element α ∈ L, take L as a finite-dimensional K vector space and consider
the K-linear map from L to L given by multiplication by α. Since multiplication by
α is linear, it corresponds to a matrix. Define NL/K(α) to be the determinant of
this matrix.

(2) For an element α ∈ L, consider the subextension K(α). Let r = [L : K(α)] and let
f(X) = Xn + an−1 + ...+ a1X + a0 ∈ K[X] be the minimal polynomial of α over K.
Define NL/K(α) = (−1)nrar0.

(3) If the extension L/K is normal, then define NL/K to be the product of all the σ(α),
for σ ∈ Aut(L/K). Note that if L/K is Galois, then it is necessarily normal and
thus NL/K(α) is the product of all the σ(α), for σ ∈ Gal(L/K).

Definition 2.16. Let L/K be a Galois extension with α ∈ L. The trace of α is defined by

TrL/K(α) =
∑

σ∈Gal(L/K)

σ(α).

Definition 2.17. Let L/K be a finite extension of the local field K of degree n. Let
MK = (πK) and ML = (πL). One has πK = πL

e for some e ≥ 1. The degree e is called the
ramification index. The integer

[kL : kK ] = f

is called the inertial degree of the extension L/K. An extension of a field K with
characteristic of the residue field equal to a prime p ≥ 0 is called unramified if e = 1.
Thus, in unramified extensions the prime remains a prime. The extension is totally
ramified if e = n, tamely ramified if p - e, and wildly ramified if p | e. Thus, in
ramified extensions, the prime factors.

It is a fact that n = ef . Also, if πL is a uniformizer in L, then νK(πL) = 1/e.
The extension may consist of unramified and ramified subextensions. We use ramification
groups, which form a chain of normal subgroups of the Galois group, to find structural
information for the Galois group of the entire extension L/K. The ramification groups
have certain properties that will be described in section 3. These properties can be used to
determine which transitive subgroups of Sn might be isomorphic to the Galois group of
L/K.

2.3. The Field of Formal Laurent Series. As discussed in the introduction, finite ex-
tensions of Qp have been studied by several authors [2–5, 9, 14]. Our focus in this paper is
to study finite extensions of the field of formal Laurent series Fp((T )).
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Definition 2.18. A formal Laurent series f(T ) is an infinite series of the form
∞∑

i=−m

aiT
i

with m, i ∈ Z, ai ∈ Fp for all i.

The elements of Fp((T )) are formal Laurent series in T . We construct this field by con-
sidering the polynomial ring Fp[T ]. The field of fractions of Fp[T ] is denoted Fp(T ).

Definition 2.19. Given x ∈ Fp(T ), write x as T r g
h

with g, h ∈ Fp[T ], T - gh. We define a
valuation νT by:

νT

(
T r
g

h

)
= r

with νT (0) =∞.

An equivalent expression for the valuation defined above is

νT (x) = νT

(
∞∑

i=−m

aiT
i

)
= −m.

We also define an absolute value | · |T such that
∣∣T r g

h

∣∣
T

= p−r. Note that we could give
this absolute value an equivalent definition in terms of something other than p. The above
definition of | · |T will remain in use for the rest of the paper.

Theorem 2.20. Fp((T )) is the completion of the field Fp(T ) with respect to | · |T .

Proof. Consider the set S of distinct limits of Cauchy sequences in Fp(T ). Each element in
S can be represented by a unique Cauchy series of the form

a−nπ
−n + . . .+ a0 + a1π + . . .+ anπ

n + . . .

where all ai are in the residue field k, and π is the largest-valued element of Fp(T ) such that
|π|T < 1 [12, p.113-115]. In this case, k = Fp and π = T . This means that all the elements
in the completion of Fp(T ) have the form

a−nT
−n + . . .+ a0 + a1T + . . .+ anT

n + . . . =
∞∑

i=−m

aiT
i

with m, i ∈ Z, ai ∈ Fp for all i. Thus the completion of Fp(T ) is the field of formal Laurent
series, Fp((T )). �

Note that Fp((T )) is a non-Archimedean local field with characteristic p. As we will only
discuss the valuation on Fp((T )), we will be using the notation ν(x) rather than νT (x) to
denote this specific valuation for the remainder of the paper unless otherwise specified.

As a local field, K = Fp((T )) has the following structure:

• The ring of integers OK = {x ∈ Fp((T )) : ν(x) ≥ 0} is the ring of formal power series

Fp[[T ]] =

{∑
n≥0

anT
n : an ∈ Fp

}
.
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• The group of units UK = {x ∈ Fp((T )) : ν(x) = 0} is a subgroup of the formal power
series which contains only those elements with a non-zero constant term.
• The maximal ideal MK = {x ∈ Fp((T )) : ν(x) > 0} is (T ), the ring of formal power

series whose constant term is zero. Any uniformizer of Fp((T )) will generate the
maximal ideal. It follows that T is the uniformizer of Fp((T )).
• The residue field k = OK/MK is Fp.

3. Ramification Groups

We define ramification groups in terms of elements from the Galois group G of L/K in
the following way:

Gi = {σ ∈ G : νL(σ(x)− x) ≥ i+ 1 for all x ∈ OL}
where i ≥ −1. The ramification groups, as mentioned in section 2, make up a chain of
subgroups of the Galois group which are eventually trivial. These Gi may not be distinct
for all i.

Definition 3.1. In the subgroup chain of ramification groups, a ramification break is de-
fined to occur at i ≥ 0 such that Gi 6= Gi+1. Depending on the Galois group and ramification
groups themselves, this break may be unique.

Note that the chain of ramification groups is an invariant of the field, so distinct chains
give distinct fields. Also if G is cyclic and of prime order p then there will be a single
ramification break since Gi will be isomorphic to either Z/pZ or {1}.

As previously mentioned, the ramification groups give information about the Galois group
G of an extension. In particular, G−1 is equal to G. G0 is called the inertia group and
is equal to the subgroup of G with automorphisms fixing Kur where Kur is the maximal
unramified extension, which will be discussed later. For i > 0, Gi is equal to the subgroup
of G with automorphisms fixing an intermediate subextension of L. In addition, G/G0 is
isomorphic to the Galois group of Kur/K, and for i ≥ 0, Gi/Gi+1 is isomorphic to the
subgroup of G with automorphisms that fix the base field of Gi in an extension from the
base field of Gi to the base field of Gi+1. Intuitively, the quotient can be thought of as
the extension resulting from “subtracting” the extension corresponding to Gi+1 from the
extension corresponding to Gi. See Figure 1 below for an illustration of this idea.

The following lemma concerning properties of the ramifications groups of an extension
appears in Serre [15, p.67] and is referenced in many of Awtrey’s works [2–5].

Lemma 3.2. Let K be a field of characteristic p. Let L/K be a Galois extension with Galois
group G and let ML denote the maximal ideal of the integers in L. For i ≥ −1, let Gi be
the i-th ramification group. Let U0 be the units in L and for i ≥ 1, let Ui = 1 + (πiL), where
πL is the generator of ML.

(a) For i ≥ 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1.
(b) The group G0/G1 is cyclic and isomorphic to a subgroup of the group of roots of

unity in the residue field of L. Its order is prime to p.
(c) The quotients Gi/Gi+1 for i ≥ 1 are abelian groups and are direct products of cyclic

groups of order p. The group G1 is a p-group.
(d) The group G0 is the semi-direct product of a cyclic group of order prime to p with a

normal subgroup whose order is a power of p.
7



(e) The groups G0 and G are both solvable.

Figure 1. Field Diagram with Ramification Groups

L

...

Kur

K

Gi/Gi+1

G0/G1

G/G0

G0

Gi

Proof. Our first step is to define a map Φ : Gi → Ui/Ui+1. Let σ ∈ Gi. Since πL ∈ OL and
σ ∈ Gi, we have

i+ 1 ≤ vL(σ(πL)− πL).

Thus, we have

i+ 1 ≤ vL

(
πL

(
σ(πL)

πL
− 1

))
= vL(πL) + vL

(
σ(πL)

πL
− 1

)
= 1 + vL

(
σ(πL)

πL
− 1

)
,

i.e.,

vL

(
σ(πL)

πL
− 1

)
≥ i.

This shows we have a well-defined map

f : Gi → Ui/Ui+1

σ 7→ σ(πL)

πL
.
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Our next step is to show that f is a homomorphism. We have

f(στ) =
στ(πL)

πL

=
σ
(
τ(πL)
πL

)
πL

σ(πL)

=
σ(πL)τ(πL)

π2
L

σ
(
τ(πL)
πL

)
τ(πL)
πL

= f(σ)f(τ)
σ
(
τ(πL)
πL

)
τ(πL)
πL

.

Thus, to show that f is a homomorphism it only remains to show that

σ
(
τ(πL)
πL

)
τ(πL)
πL

∈ Ui+1.

Note that since τ(πL)
πL

is a unit for any τ ∈ Gi, we have σ
(
τ(πL)
πL

)
is easily seen to be a unit

as well. Let u = τ(πL)
πL

We now show that

σ(u)

u
∈ Ui+1

if σ ∈ Gi. To see this, observe that we have

vL

(
σ(u)

u
− 1

)
= vL(u)−1 + vL(σ(u)− u)

= −vL(σ(u)) + vL(σ(u)− u)

= vL(σ(u)− u)

≥ i+ 1.

Thus, we have that f is a group homomorphism as claimed.
It only remains to show that the kernel of f is Gi+1. Let σ ∈ Gi with f(σ) = 1. Then we

have σ(πL)
πL
∈ Ui+1, i.e., vL

(
σ(πL)
πL
− 1
)
≥ i+ 1. However, this simplifies to the condition that

vL(σ(πL)− πL) ≥ i+ 2,

i.e., σ ∈ Gi+1. (Note we strictly need to show that inequality for all elements of OL, but
it is not hard to show it is enough to show it for the uniformizer.) Thus, ker(f) ⊂ Gi+1.
Essentially the same argument shows that Gi+1 ⊂ ker(f), which finishes the proof of part (a).

For (b) note that U0/U1 is isomorphic to the multiplicative group of the residue field of
L. Thus it follows that G0/G1 is cyclic and a subgroup of the roots of unity in the residue
field of L.
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For (c), note that for i ≥ 1, Ui/Ui+1 is isomorphic to the additive group of the residue
field. It then follows that Gi/Gi+1 is cyclic and by the fundamental theorem of finite abelian
groups every finite abelian group can be expressed as a direct sum, or in other words a direct
product of abelian groups. That G1 is a p-group follows from |G1| =

∏∞
i=1 |Gi/Gi+1|. Note

that this is actually a finite product since the Gi eventually become trivial.

For (d), since G0 and G1 have relatively prime order, there is a subgroup of G0 that
projects isomorphically onto G0/G1. From (b) we know that this quotient group is cyclic
with order prime to p. Then (d) follows based on knowledge of semi-direct products.

For (e), consider the fact that G/G0 is isomorphic to the Galois group of the residue field
and is cyclic. Recall also that the ramification groups define a sequence of decreasing normal
subgroups. From (b) and (c) we know that the quotient groups are abelian and thus G0 and
G1 are solvable. �

Suppose L/K is a degree n extension of a characteristic p field K. We can use Lemma 3.2
to determine possible Galois groups for L/K. Following [2, Ch. 4], we consider the transitive
subgroups of the symmetric group Sn. Possible Galois groups are those which meet the
following criteria:

(1) G contains a solvable normal subgroup G0 such that G/G0 is cyclic of order dividing
n.

(2) G0 contains a normal subgroup G1 that is a p-group, which is possibly trivial.
(3) G0/G1 is cyclic of order dividing p[G:G0]−1.

Through direct computation, we can reduce our list of transitive subgroups to those which
meet the conditions above. To precisely identify the Galois group of L/K, we would need to
find a defining polynomial f(x) for L/K. We would then use invariants such as centralizer
order and parity to match f(x) with one of the remaining subgroups of Sn.

4. Unramified Extensions

In order to classify the extensions of Fp((T )), we must first examine unramified extensions.
This will require several results carried over from the study of p-adic fields. Some of the proofs
in this section follow methods used in [8, Ch. 5]. In particular, Hensel’s Lemma is true for
all local fields including Fp((T )).

Theorem 4.1 (Hensel’s Lemma). Let K be a field, f(x) be a polynomial in OK [x], and
α0 ∈ OK such that f(α0) ≡ 0 (mod MK) and f ′(α0) 6≡ 0 (mod MK). Then there exists
α ∈ OK such that f(α) = 0 and α ≡ α0 (mod MK).

Corollary 4.2. Let K/Fp((T )) be a finite extension and let f = f(K/Fp((T ))). Then Ox
K

contains the cyclic group of the (pf − 1)st roots of unity.

Proof. Observe that OK/MK is a finite field of degree pf . Because every subgroup of a
finite field is cyclic, (OK/MK)× is a cyclic group of order pf − 1. So for each m that divides
pf − 1, Fm(x) = xm − 1 has exactly m roots in (OK/MK)×. Any lift of these roots to OK
gives us m non-congruent approximate roots. The derivative F ′m(x) = mxm−1 will be non-
zero in OK (because the approximate roots are units). Thus since p - m, Hensel’s Lemma
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gives us m different mth roots of unity in O×K . This is true for any m that divides pf − 1, so
Ox
K contains the cyclic group of (pf − 1)st roots of unity. �

Definition 4.3. Let K and L be two extensions of the field F . The compositum of K and
L, denoted KL, is defined to be the intersection of all fields containing both K and L.

In other words, the compositum is the smallest field containing both K and L. It can be
formed by adjoining generators of K to L or alternatively, adjoining generators of L to K.

In the discussion that follows, we let K = Fp((T )) and Ku be an unramified extension
of K. For every positive integer f , we can show there exists a unique degree f unramified
extension of K, and that we obtain this extension by adjoining a primitive (pf − 1)st root
of unity.

Theorem 4.4. For every integer f ≥ 1, K has a unique unramified extension of degree f .

Proof. It can be shown that the compositum of unramified extensions is unramified [10, p.48].
Keeping that in mind, consider two unramified degree f extensions of K, say Lf and Kf .
Then KfLf/K is unramified and has the same residue field as Kf , since a finite field has a
unique extension for a given degree. Thus,

[KfLf : K] = [KfLf : Kf ][Kf : K]

with [KfLf : K] = [Kf : K] = f , which shows Kf ⊂ Lf and Lf ⊂ Kf . Therefore, Kf = Lf
and an unramified extension of a given degree is unique. �

Theorem 4.5. The unique degree f unramified extension of K, Ku/K is obtained by
adjoining a primitive (pf −1)st root of unity to K. Consequently every unramified extension
is a Galois extension.

Proof. By 4.2, Ku contains the (pf − 1)st roots of unity. Let β be a primitive (pf − 1)st root
of unity in Ku. Then we have a tower of extensions

K ⊂ K(β) ⊂ Ku.

The powers of β are the (pf − 1)st roots of unity, which are distinct by 4.2. Thus β̄ is a
(pf − 1)st root of unity, so that the residue field of the extension K(β)/K contains Fpf ∼= k.
The degree of the residue field extension must be less than or equal to the degree of the
extension of K. Thus the degree of K(β)/K is at least f . Since Ku/K is of degree f , it
follows that Ku = K(β). �

Definition 4.6. The maximal unramified extension, denoted Kur, is the compositum
of all the unramified extensions of K.

Unramified extensions are already well understood. So, when we build up our tower of
fields, we focus on building ramified extensions over our maximal unramified extension.

5. Totally Ramified Extensions

Let L/K be a finite extension of K and let Kur, a subfield of L, be the maximal unramified
extension of K. Then L/Kur is totally ramified. This means that we can construct all finite
extensions of K by looking at unramified and totally ramified extensions. In this section, we
focus on totally tamely ramified extensions. Unless otherwise specified, we will assume that
p - n and e = n which implies f = 1.
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Definition 5.1. Let f(x) ∈ OK [x] be a monic polynomial:

f(x) = xn + an−1x
n−1 + ...+ a0.

If ν(ai) ≥ 1 for each i = 0, ..., n− 1, and ν(a0) = 1, then f(x) is said to be Eisenstein.

The definition for Eisenstein can also be described in terms of the maximal ideal. That
is, let (πk) be the maximal ideal of K. Then a polynomial f(x) is Eisenstein if ai ∈ (πK)
for each i = 0, ..., n − 1 but a0 /∈ (π2

k). Note that if a polynomial is Eisenstein then it is
irreducible. The following well-known theorem can also be found in [7, p.54].

Lemma 5.2. If x0, · · · , xn−1 ∈ K where |xi|K 6= |xj|K for i 6= j, then∣∣∣∣∣
n−1∑
i=0

xi

∣∣∣∣∣
K

= max
0≤i≤n−1

{|xi|K}.

Proof. Let | · |K = | · |. We show without loss of generality that if |x0| > |x1| > · · · > |xn−1|,
then |x0 + x1| ≤ max{|x0|, |x1|} = |x0|. On the other hand we have |x0| = |x0 + x1 − x1| ≤
max{|x0 + x1|, |x1|} = |x0 + x1| since |x0| > |x1|. Thus, |x0 + x1| = |x0|. Now assume for
some j we have |x0 + x1 + · · ·+ xj−1| = |x0|. Then∣∣∣∣∣

j−1∑
i=0

xi + xj

∣∣∣∣∣ ≤ max

{∣∣∣∣∣
j−1∑
i=0

xi

∣∣∣∣∣ , |xj|
}

= max{|x0|, |xj|}
= |x0|.

On the other hand we have

|x0| =

∣∣∣∣∣
j−1∑
i=0

xi

∣∣∣∣∣ =

∣∣∣∣∣
j∑
i=0

xi − xj

∣∣∣∣∣ ≤ max

{∣∣∣∣∣
j∑
i=0

xi

∣∣∣∣∣ , |xj|
}

=

∣∣∣∣∣
j∑
i=0

xi

∣∣∣∣∣
since |x0| > |xj|. Therefore, ∣∣∣∣∣

n−1∑
i=0

xi

∣∣∣∣∣ = max
0≤i≤n−1

{|xi|}.

�

Theorem 5.3. For p - n, a finite extension L/K of a non-Archimedean local field is totally
ramified if and only if L = K[α], with α a root of an Eisenstein polynomial.

Proof. Let f(x) =
n∑
i=0

aix
i be an Eisenstein polynomial of degree n and L/K be an extension

with defining polynomial f . Suppose α is a root of f . Then

−anαn = an−1α
n−1 + · · ·+ a1α

1 + a0.
12



So taking the valuation of both sides we get

νL(−anαn) = νL(anα
n) = νL

(
n−1∑
i=0

aiα
i

)
≥ min

0≤i≤n−1
{νL(aiα

i)},

= min
0≤i≤n−1

{νL(ai) + νL(αi)}.

For this valuation, we can see that for an element s ∈ K, νL(st) = tνL(s). Using this fact
and the fact that νL(s) = eνK(s), the following is the above steps reduced:

nνL(α) ≥ min
0≤i≤n−1

{eνK(ai) + iνL(α)}.

It follows that νL(α) > 0 because by definition of Eisenstein, for all i > 0, ν(ai) ≥ 1 and
ν(a0) = 1. Also, eνK(a0) < eνK(ai) + iνL(α) for all i > 0, so nνL(α) = eνK(a0) = e. Thus,
νL(α) = 1 and n = e. Therefore, this polynomial defines a totally ramified extension of
degree n. See [7, p.54].

For the converse, let L/K be a totally and tamely ramified extension of degree n and let
πL be a uniformizer of L. For the minimal polynomial f(x) = xn + an−1x

n−1 + ...+ a0 of πL
over K, then

n = nνL(πl) = νL(
n−1∑

0

aiπ
i
L)

= min
0≤i≤n−1

{νL(ai) + νL(πiL)}

= min
0≤i≤n−1

{nνK(ai) +
i

n
}.

Since from the second method for calculating the norm a0 = NL/K(πL) = 1, then |a|0 =
|πL|n which implies νK(a0) = νL(πL) = 1. Now for 1 ≤ i ≤ n− 1 we have:

n ≤ nνK(ai) +
i

n

0 < n− i

n
≤ nνK(ai)

Since 0 < νK(ai), this necessarily implies that 1 ≤ νK(ai). It follows that f(x) is Eisenstein.
�

Note that since Kur is the maximal unramified sub-extension of L then L/Kur is also a
totally ramified extension and Theorem 5.3 applies.

5.1. Totally Tamely Ramified Extensions. Using the work of Pauli and Roblot [14], we
can show exactly what the totally tamely ramified extensions look like, but first we need some
theorems adapted from Pauli [13]. This section only deals with extensions over Fp((T )) and
so we define K/Fp((T )) to be the maximal unramified extension and L/K to be the totally
tamely ramified extension. Also we will denote |πK |K = |MK |K .
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Definition 5.4. Let L/K be an algebraic extension of degree n. Then a basis of OL over
OK is an integral basis of L/K. Let (δ0, · · · , δn−1) be an integral basis of L/K. Then

disc(L/K) = det((δ
(l)
k )0≤k≤n−1,1≤l≤n)2

is the discriminant of L/K.

The discriminant of the field generated by an Eisenstein polynomial is exactly the dis-
criminant of the polynomial.

Lemma 5.5. Let L = K(α)/K be a finite Galois extension of degree n and f be the
minimal polynomial over K with roots α1, . . . , αn where α = α1. then disc(L/K) = disc(f)
and disc(f) = nν(f ′(α)).

Proof. Let σi ∈ Gal(L/K) and consider σi(α) = αi for i ∈ {1, . . . , n}. Then σi(x
j) = xji

where o ≤ j ≤ n− 1. Note disc(L/K) is the square of the determinant of the matrix

ν =


1 x1 . . . xn−1

1

1 x2 . . . xn−1
2

...
...

...
1 xn . . . xn−1

n

 .
Since ν is a Vandermonde matrix, det ν = πi<j(αi − αj) and it follows that disc(L/K) =
disc(f). Next we have

f ′(xi) =
∑
k

π(xi − xj).

However, only the k = i term is non-zero, hence

f ′(xi) =
∏
j 6=i

(xi − xj)

then it follows that

disc(f) =
n∏
i=1

f ′(xi)

therefore,

νK(disc(f)) = νK(
n∏
i=1

f ′(xi)) = nνK(f ′(xi)).

�

Theorem 5.6. (Ore’s Conditions) Let K be a finite extension of Fp((T )) with the maximal
ideal MK and note that the valuation νK(x) = e · νT (x). Then there exist totally ramified
extensions L/K of degree n and discriminant Mn−1

K .

Proof. By theorem 5.3, every totally ramified extension L of K can be generated by ad-
joining a root α of an Eisenstein polynomial f(x) = xn + an−1x

n−1 + ... + a0. Then we
have disc(F/K) = disc(f(x)) since f(x) is Eisenstein and we can write νK(disc(f(x)))/n =
νK(f ′(α)) because f(x) is irreducible. Since α is a uniformizer in F , νK(α) = 1/e = 1/n.

14



Then the valuations of iaiα
i−1 for 1 ≤ i < n and nαn−1 are all different and so by lemma

5.2 we get:

νK(f ′(α)) = νK(nαn−1 + (n− 1)an−1α
n−1 + ...+ a1)

= min
1≤i≤n−1

{
νK(n) +

n− 1

n
, νK(i) + νK(ai) +

i− 1

n

}
Note that νK(x) = 0 for all x ∈ Z and νK(ai) ≥ 1 for all 1 ≤ i ≤ n− 1, so

= min
1≤i≤n−1

{
n− 1

n
, νK(ai) +

i− 1

n

}
=

n− 1

n

Thus since f(x) is irreducible and νK(disc(f(x))) = nνK(f ′(α)) = n − 1 it is clear that we
can construct an Eisenstein polynomial f(x) such that disc(f(x)) =Mn−1

K . �

Let Ln denote the set of all totally ramified extension L/K of degree n and discriminant
Mn−1

K . Also let En denote the set of all Eisenstein polynomials over K of degree n and
discriminant Mn−1

K . It is known from Theorem 5.6 that roots of the polynomial in En

generate all the extensions L ∈ Ln.

Definition 5.7. An ultrametric distance is a metric which satisfies the stronger condition
of the triangle inequality:

d(f, h) ≤ max{d(f, g), d(g, h)}
for all f, g, h and at least two of d(f, h), d(f, g), and d(g, h) are equal.

Theorem 5.8. Let f, g ∈ En of degree n. Then d(f, g) := |f(β)|K = |g(α)|K where α (resp.
β) is any root of f (resp. g) defines an ultrametric distance over En. Furthermore, for fixed
root α of f we can choose the root β of g such that |β − α| is minimal with respect to all
roots αi of f which gives

d(f, g) =
n∏
i=1

max{|β − α|, |αi − α|}.

Proof. Since f and g are Eisenstein of degree n where p - n, these polynomials generate
a totally and tamely ramified extension of degree n. Let Lf , Lg ∈ Ln be the extensions
generated by f and g, respectively. Since we are only considering Galois extension, Lf and
Lg are Galois. Let G = Gal(Lg/K) and define d(f, g) := |f(β)| for any root β of g. The fact
that d(f, g) ≥ 0 follows from the nonnegativity of | · |. Next, suppose d(f, g) = 0. Since | · |
is Galois invariant, then for σ ∈ G and root β′ = σ(β) we have

|f(β)| = |σ(f(β))| = |f(σ(β))| = |f(β′)|.
Thus

d(f, g) = |f(β)| = 0 ⇔ |f(σi(β))| = 0 for all σi ∈ G
⇔ f(σi(β)) = 0

⇔ σi(β) is a root of f for all i

⇔ f = g.
15



The above also shows that d(f, g) does not depend on the choice of β. Moreover, if γ1, . . . , γn
represent the roots of f and β1, · · · , βn represent the roots of g then for any γ ∈ {γ1, . . . , γn}.

|f(β)|n =
n∏
i=1

|f(βi)| =
n∏
i=1

n∏
j=1

|βi − γj|

=
n∏
j=1

n∏
i=1

|γj − βi|

=
n∏
j=1

|g(γj)|

= |g(γ)|n.

Consequently, d(f, g) = d(g, f) since |f(β)|, |g(γ)| ∈ R≥0. Now fix a root γ of f and choose
a root β of g such that the distance |β − γ| is minimal. Notice that this distance does not
depend on the choice of γ since |g(γ)| =

∏
i,j |γi − βj| = |g(γ′)| for all roots γ′ of f . We can

write

d(f, g) = |f(β)| =
n∏
i=1

|β − γi|.

Next suppose that there exists a root γi such that |β− γi| 6= |β− γ|. Then |β− γi| > |β− γ|
and by Lemma 5.2

|γ − γi| = |γ − β + β − γi| = |β − γi|.
So

d(f, g) =
n∏
i=1

max{|β − γ|, |γ − γi|}.

Finally, to show d satisfies the ultrametric inequality, let h ∈ En with roots λ and λ′ and
choose γ and β such that |β − λ| is minimal with respect to all roots of g and |γ − λ′| is
minimal with respect to all roots of f . Then

d(f, h) =
n∏
i=1

max{|γ − λ′|, |γ − γi|}

≤
n∏
i=1

max{|γ − λ|, |γ − γi|}

≤
n∏
i=1

max{max{|γ − β|, |β − λ|}, |γ − γi|}

≤ max

{
n∏
i=1

max{|γ − β|, |γ − γi|},
n∏
i=1

max{|β − λ|, |γ − γi|}

}
≤ max{d(f, g), d(g, h)}.

Therefore d is an ultrametric. �

The distance d(f, g) is calculated using the following lemma.
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Lemma 5.9. Let f, g ∈ En. Write f(x) = xn + fn−1x
n−1 + · · · + f0 and g(x) = xn +

gn−1x
n−1 + · · ·+ g0 and set

w = min
0≤i≤n−1

{
νK(gi − fi) +

i

n

}
Then d(f, g) = |MK |w.

Proof. Let θ be a root of the defining polynomial of the unramified extension Fp((T ))/K and
γ be a root of f(x). Then we can write

g(x) =
n∑
i=0

gi(θ)x
i

where gi(β) ∈ K[β]. From this we observe the following:

g(γ) = g(γ)− f(γ) =
n−1∑
i=0

(gi(θ)− fi(θ))γi

. We have νK(γ) = 1
n

since γ is a prime element. Therefore, all the terms in the sum,∑n−1
i=0 (gi(θ)−fi(θ))γi , have different valuations. It follows from Lemma 5.2 that the valuation

of g(γ) is the minimum of all the terms. Thus, d(f, g) = |g(γ)| = |MK |w. �

5.2. Construction of Generating Polynomials. We adapt the work of [14] to construct
a finite set of polynomials that will generate all the extension in Ln. We define K/Fp((T )) to
be the maximal unramified extension and L/K to be the totally tamely ramified extension.
Let Γ be the Galois group of the abelian extension Fp((T ))/K and letR1,2 be a fixed Γ-stable
system of representatives of the quotientM1

K/M2
K . We denote R∗1,2 to be the subset of R1,2

whose νK -valuation is 1.
Let Ω be the set of n-tuples (ω0, · · · , ωn−1) ∈ (K)n which satisfy the following conditions:

ωi ∈

{
R∗1,2 if i = 0 (1)

R1,2 if 1 ≤ i ≤ n− 1 (2)

Each element of ω = (ω0, . . . , ωn−1) ∈ Ω is associated with the polynomial Aω(x) ∈ OK [x]
given by

Aω(x) = xn + ωn−1x
n−1 + · · ·+ ω1x+ ω0

Lemma 5.10. The polynomials Aω are Eisenstein polynomials of discriminant Mn−1
K .

Proof. By construction νK(ωi) ≥ 1 for all i and (1) gives νK(ω0) = 1. So Aω is an Eisenstein
polynomial.

Let α be a root of Aω. Since the discriminant of Aω is the norm from K(α)/K of A′w(α),
then

νK(A′w(α)) =
n− 1

n
as seen in Theorem 5.6. So it follows that νK(disc(Aω)) = n− 1 and disc(Aω) =Mn−1

K . �

Definition 5.11. For any f ∈ En we define the closed disc with a radius r to be DEn =
{g ∈ En|d(f, g) ≤ r.
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Theorem 5.12. (Krasner) The set En is the disjoint union of the closed discsDEn(Aω, |M2
K |)

with center Aω and radius |M2
K | as ω runs through Ω.

Proof. Lemma 5.10 shows that the polynomials Aω are elements of En. Let ω, ω′ be two
distinct elements of Ω and let i be such that ωi 6= ω′i. Then

r = νK(ωi − ω′i) +
i

n
≤ 1 +

i

n
< 2

since ω, ω′ ∈ MK . Therefore, d(Aω, A
′
ω) = |MK |r > |M2

K | and by the ultrametric property
of d the discs Dω and D′ω are disjoint.

Now let f ∈ En and write f(x) = xn + fn−1x
n−1 + · · · + f0. Since f is an Eisenstein

polynomial, νK(f0) = 1 and there exists ω0 ∈ R∗1,2 such that

f0 = ω0( mod M2
K).

Furthermore, νK(fi) ≥ 1 for all i > 1 then there exists ωi ∈ R1,2 such that νK(fi) ≡ (mod
M2

K ). Let ω = (ω0, . . . , ωn−1). We claim that f ∈ Dω. We have νK(fi − ωi) ≥ 2 since
fi − ωi ∈M2

K . Thus for all i we have

νK(fi − ωi) +
i

n
≥ 2.

Therefore, d(Aω, f) < |M2
K | and so f ∈ Dω

�

Corollary 5.13. Let ω be an element of Ω and let α be a root of Aω(x). The extension
K(α)/K is a totally ramified extension of degree n and discriminant Mn−1

K . Conversely,
if L/K is totally ramified extension of degree n and discriminant Mn−1

K then there exists
ω ∈ Ω and a root α of Aω(x) such that L = K(α).

Proof. The first claim is true because we know that the polynomials Aω ∈ En. To prove the
second claim, let γ = γ1, . . . , γn denote the roots of f and let ∆f be the minimal distance
between γ and any other root of f . Then

|f ′(γ)| =
n∏
i=2

|γ − γi| ≤ ∆f · |M(n−2)/(n)
K ,

since the γi are prime elements. But,

|f ′(γ)| = |M(n−1)/n
K |

and thus

∆f ≥ |M1/n
K |.
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Now let ω ∈ Ω be such that d(f, Aω) ≤ r = |M2
K | and let α denote a root of Aω such that

|α− γ| is minimal. Then we claim that |α− γ| < ∆f , for otherwise

d(f, Aω) =
n∏
i=1

max{|γ − α|, |γ − γi|}

≥
n∏
i=1

max{∆f, |γ − γi|}

≥
n∏
i=2

|γ − γi| = ∆f |f ′(γ)|

≥ |MK |.
This contradicts that |MK | > r. Hence |α − γ| < ∆f and it follows from Krasner’s lemma
that L = K(α). �

Lemma 5.14. The number of polynomials Aω, or equivalently by Theorem 5.12 the number
of disjoint closed discs of radius r = |M2

K | in En, where ω ∈ Ω, is given by

#DEn(r) = (q − 1)qn−1.

Proof. Since R1,2 is a fixed Γ-stable system of representatives and Γ is the Galois group of
the unramified extension of the residue field of Fp((T )), then the number of elements in R∗1,2
is (q− 1) and the number of elements in R1,2 is q. For each Aω, ω0 ∈ R∗1,2 and for 1 ≤ i ≤ n,
ωi ∈ R1,2. Thus we have:

#DEn(r) = (q − 1)qn−1

and the formula holds. �

Lemma 5.15. Let t > 1 be an integer and let s = |M(n−1+t)/n
K |. Let #DEn(s) denote the

number of disjoint closed discs of radius s in En. Then the number of elements in Ln is

#Ln = #DEn(s)
n

(q − 1)qt−2
.

Proof. Let Πn denote the set of all prime elements of members of Ln. Alternatively, since
Πn is essentially the set of constant terms of Eisenstein polynomials, Πn can be defined as
the union of the sets P\P2, where P is the prime ideal of some member L ∈ Ln. Let χ be
the map from Πn to En that sends a prime element to its minimal polynomial over K.

Let u = |Mt
K |1/n, and let α and β be two elements of Πn such that |α − β| ≤ u.

Then α and β generate the same field L ∈ Ln by Krasner’s lemma. Observe we have
d(χ(α), χ(β)) ≤ u|Mn−1

K |1/n = s by the same reasoning as in Corollary 5.13. We define
a closed disc Dπ(α, r) = {β ∈ π||α · β ≤ r}. Hence, χ(DΠ(α, u)) ⊂ DEn(χ(α), s), where
DΠ(α, u) is the closed disc of center α and radius u in Πn . Conversely, let f(x) ∈ En and
let α denote any root of f(x), so f(x) = χ(α). Then it is straightforward to prove, using the
same methods, that DEn(χ(α), s) ⊂ χ(DΠ(α, u)). Thus, for all α ∈ Πn

DEn(χ(α), s) = χ(DΠ(α, u)).

Now, the map χ is clearly surjective and n-to-one. Furthermore, the inverse image of χ(α)
is the set of conjugates of α over K, and since t > 1, the closed discs of radius u centered
at the conjugates of α are all disjoint. It follows that the inverse image of any closed disc
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of radius s in En is the disjoint union of n closed discs of radius u in Πn. But, again by
the remark above, any such disc is in fact contained in P\P2 for some L ∈ Ln. Thus, the
number of disjoint closed discs of radius u in Πn is equal to

#Lnq
t−2(q − 1) = n#DE(s),

and the result is proven. �

Theorem 5.16. Let K be a finite extension of Fp((T )) with maximal ideal MK and rami-
fication index e. Let q = pf equal the order of the residue field of K. Then the number of
totally ramified extensions of K of degree n and discriminant Mn−1

K is

#Ln = n

Proof. Choose t = n+ 1. By Theorem 5.15,

#Ln = #DEn(|M(n−1+n+1)/n
K |) n

(q − 1)qn−1
= #DEn(|M2

K |)
n

(q − 1)qn−1
.

Then by applying Theorem 5.14

#DEn,j
(|M2

K |)
n

(q − 1)qn−1
= (q − 1)qn−1 · n

(q − 1)qn−1
= n

Thus for a given degree there are exactly n distinct, but not necessarily non-isomorphic,
totally tamely ramified extensions. �

Pauli and Roblot have calculated convenient polynomials that generate totally tamely
ramified extensions of Qp. We adapt their methods to prove the following result:

Theorem 5.17. Let ζ be a (pf − 1)st root of unity in Kur and let g = gcd(pf − 1, n). Then
for 0 ≤ r ≤ g − 1, all totally tamely ramified extensions over Kur are generated by roots of
the polynomial

xn − ζrπK .

Proof. Consider the set of generating polynomials R∗1,2 = {ζ iπK with 0 ≤ i ≤ pf} and

R1,2 = R∗1,2∪{0} Then the roots of the polynomials xn+ωn−1x
n−1 + ...+ω0, where ωi ∈ R1,2

for 1 ≤ i ≤ n−1 and ω0 ∈ R∗1,2, generate all totally tamely ramified extensions of discriminant

Mn−1
K by Theorem 5.13.
Consider extensions of K generated by roots of the polynomials xn − ζ iπ so that ωi =

0 for 1 ≤ i ≤ n− 1. Suppose that α is such a root and g = gcd(n, pf − 1). Then since α ∈ L
if and only if ζhα ∈ L because ζ ∈ K, ζhα generates this same extension. If we choose h
so that nh + i ≡ r( mod pf − 1) with 0 ≤ r < g, then the minimal polynomial of ζhα is
xn + ζnh+iπ since:

(ζhα)n + ζnh+iπ = ζnhαn + ζnh+iπ

= ζnh(αn + ζ iπ).

Hence we only need to consider the polynomials xn− ζrπ for 0 ≤ r ≤ g−1. This polynomial
is Eisenstein and by Theorem 5.3, it will define a totally tamely ramified extension.

Let xn − ζrπ and xn − ζr′π be two of these polynomials which generate a totally tamely
ramified extension where 0 ≤ r, r′ ≤ g− 1 and r 6= r′. Let α and α′ be roots of xn− ζrπ and
xn− ζr′π respectively. Suppose that α and α′ generate the same field. Then this field would
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contain an n-th root of ζr−r
′
. To see this, consider the following: If we assume α ∈ L if and

only if α′ ∈ L then

αn + ζrπ = 0 = (α′)n + ζr
′
π

αn − (α′)n = ζr
′
π − ζrπ

= π(ζr
′ − ζr)

= ζr
′
π(1− ζr−r′)

Thus this field contains an n-th root of ζr−r
′

which contradicts our assumption that the field
only contains the (pf−1)-th roots of unity since r−r′ is never a multiple of n modulo pf−1.
Therefore α and α′ must generate two distinct extensions of K. Let ρ be a primitive n-th
root of unity in the algebraic closure of Fp((T )) denoted Fp((T )) such that for m = n/g,

ρm = ζ(pf−1)/g. Then the conjugates of α over K are α, ρα, ..., ρn−1α. So α, ρmα, ..., ρ(g−1)mα
all generate the same field, but α, ρα, ...ρm−1α all generate distinct isomorphic extensions.
More specifically, the roots of the polynomial xn + ζrπ generate g classes of m distinct
isomorphic extensions. Thus there are n total extensions generated by the roots of these
polynomials. By Theorem 5.16 there are exactly n totally ramified extensions of degree n of
K, which proves that all totally tamely ramified extensions of degree n of K are generated
by the roots of the polynomials xn − ζ iπ. �

5.3. Totally Wildly Ramified Extensions of Degree p. Before discussing extensions
of degree p, recall how the ramification groups were defined previously. In correspondence
with these ramification groups are the groups of units. The group Ui = 1 + (πiL), which will
also be written as Ui = 1 +Mi

L corresponds to the group Gi. Recall that values i for which
Gi 6= Gi+1 are called ramification breaks. From Artin-Schreier theory, which deals with
extensions of degree equal to the characteristic, the Galois group G will be cyclic, namely
Z/pZ. Because of that fact, the ramification groups will either be G or {1} causing there to
be a single, unique ramification break.

Definition 5.18. For K a field of characteristic p, an Artin-Schreier polynomial is a
polynomial of the form xp − x− α for α ∈ K× with α 6= 0.

The following is a well-known result that leads to our next theorem.

Lemma 5.19 (Hilbert’s Theorem 90, Additive Form). Let L/K be a cyclic Galois extension
with degree n and Galois group G. Let σ be a generator of G and let β ∈ L. Then TrL/K(β)
is equal to 0 if and only if there exists α ∈ K such that β = α− σ(α).

Proof. See [11, p.290]. �

Theorem 5.20. Any Galois extension of K of degree p is the splitting field of an Artin-
Schreier polynomial.

Proof. Let L/K be a Galois extension of degree p. As stated above, the Galois group G
will be cyclic of order p. Then TrL/K(−1) = p(−1) = 0, since K has characteristic p.
Let σ be a generator of G. By Lemma 5.19, there exists α ∈ L such that σ(α) − α = 1.
Thus σ(α) = α + 1 and σi(α) = α + i for i = 1, . . . , p. Since α has p distinct conjugates,
[K(α) : K] ≥ p. It follows that L = K(α). Note that

σ(αp − α) = σ(α)p − σ(α) = (α + 1)p − (α + 1) = αp − α.
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Since αp − α is fixed by σ, the generator of G, it is fixed by every element of G. Hence
αp − α ∈ K. Let a = αp − α. Then α satisfies the equation xp − x− a = 0 and L/K is the
splitting field of an Artin-Schreier polynomial. �

Theorem 5.21. There are infinitely many totally ramified extensions of a characteristic p
field K of degree p.

Proof. Let f(x) = xp − x − π−mK ∈ K[x] with m ∈ Z be a generating polynomial such that
L = K[x]/f(x). Suppose L/K is a totally ramified extension with νL a discrete valuation
on L and G = Z/pZ the Galois group. Let πL ∈ L be a uniformizer. It suffices to show that
there are an infinite number of values at which the unique ramification break can occur.

Consider νL(σ(πL)− πL) = νL

(
πL

(
σ(πL)
πL
− 1
))

= 1 + νL

(
σ(πL)
πL
− 1
)

. With this equality,

in Gi we can look at νL

(
σ(x)
x
− 1
)
≥ i rather than νL(σ(x)− x) ≥ i+ 1. It can be found in

the proof of Lemma 3.2 that σ(πL)
πL
∈ UL. Thus, σ(πL)

πL
= u for some unit u ∈ L. Let u = uKw

for uK ∈ UK and w ∈ 1 +ML. It is easily shown that we can define u in this way:

u = a0 + a1πL + · · · (for some ai ∈ UK , i ≥ 0)

= a0(1 +
a1

a0

πL + · · · ) with 1 +
a1

a0

πL + · · · ∈ 1 +ML.

Write

σ(πL)

πL
= uKw.

Then we have

σ

(
σ(πL)

πL

)
· σ(πL)

πL
= σ(uKw) · uKw.

Thus

σ2(πL)

πL
= σ(uKw) · uKw

= u2
Kw · σ(w).

The above comes from the fact that all σ in the Galois group fix elements of K by definition

and uK ∈ UK . Continue this process of multiplying by σ(πL)
πL

= σ(uKw) on each side until,

on the left hand side, the term is equal to σp(πL)
πL

. Because this is a degree p extension with
cyclic Galois group,

1 =
σp(πL)

πL
= upKwσ(w) · · · σp−1(w) where wσ(w) · · ·σp−1(w) ∈ 1 +ML.

Thus, upK ∈ 1 +ML because, from above, wσ(w) · · ·σp−1(w) and upK must be units. Divide
by wσ(w) · · ·σp−1(w) to see upK ∈ 1 +ML. This implies uK ∈ 1 +ML and, since the residue
field of L will be the same as that of K in a totally ramified extension, uK ∈ 1 +MK . Then,
σ(πL)
πL
∈ 1 +ML.
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This gives σ(πL)
πL

= 1 + uLπ
s
L for some uL ∈ UL and s ≥ 1, where s does not depend of

choice of uniformizer. From the proof of 3.2 part (a) we saw σ(u)
u
≡ 1(mod πs+1

L ) for u ∈ UL.

We can conclude for any λ ∈ L×, σ(λ)
λ
∈ 1 + πsLUL. To see this let λ = uLπ

a
L with p - a.

Then

σ(λ)

λ
=
σ(uLπ

a
L)

uLπaL

=
σ(uL)

uL

(
σ(πL)

πL

)a
∈ 1 + πsLUL.

Thus, νL

(
σ(λ)
λ
− 1
)

= s. This implies that G = Gs and Gs+1 = {1}. This shows that the

unique ramification break occurs at i = s.

Now suppose λ is a root of f(x) = xp − x− α, where α = π−mK . Then,

α = λ(λ+ 1) · · · (λ+ (p− 1))

because if λ is a root, then λ + n for n ∈ Z/pZ is a root. In the above product, πsL divides
λ but πsL does not divide n = 1, . . . , p − 1. Thus, (λ + 1), · · · , (λ + (p − 1)) are units. So,
νK(α) = νL(λ), since α ∈ K and λ ∈ L×.

Therefore, νK(α) = s. For α = π−mK , −m = s; because there are infinitely many choices
for m, there are infinitely many ramification breaks, thus extensions of degree p. �

Example 5.22. Let p = 5 and f(x) = x5 − x− T−3.

• This will generate a degree 5 extension of F5((T )).
• Then the ramification groups G−1 = G0 = · · · = G3 = Z/5Z are cyclic.
• For i ≥ 4, we have the groups Gi = {1}.

Note that when given two Artin-Schreier polynomials f(x) = xp−x−a and g(x) = xp−x−b
for a, b ∈ K, ν(a) = ν(b) does not imply the extensions generated by f and g are isomor-
phic. If the constant terms a and b differ by a function of the form cp − c, then f and g will
generate isomorphic extensions.

6. Example and Future Direction

To illustrate our results, we will look at counting all finite field extensions L/K where K =
F3((T )) of degree n = 10 for p = 3 and discuss general properties of the defining polynomials
and Galois group. We will also look at calculating the Galois group of a particular extension.
For n = 10 and p = 3, L/F3((T )) is one of the following:

(1) a degree 10 unramified extension,
(2) a degree 2 totally tamely ramified extension of a degree 5 unramified extension,
(3) a degree 5 totally tamely ramified extension of a degree 2 unramified extension,
(4) or a degree 10 totally tamely ramified extension.

For the first case, there is one unique unramified extension by Theorem 4.4. This unique
unramified extension is defined by the cyclotomic polynomial xp

f − 1. For the degree 10
unramified extension, f = 10 and thus x310 − 1 is a defining polynomial. It is important to
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note that this is not the only possible defining polynomial. In fact, Dummit and Foote [6,
p.587] outline an algorithm for finding irreducible polynomials in the ring Fp[x], which can
easily be applied to the polynomial ring over Fp((T )) as well. The Galois group for this
unramified extension is cyclic and isomorphic to Z/fZ, or Z/10Z in this case.

For the second and third cases, there are unique unramified extensions of degree 2 and
5 respectively. These are each defined by the cyclotomic polynomial xp

f − 1, where f is
the residue degree of the unramified extension. This gives defining polynomials x32 − 1 and
x35−1. The Galois group of each unramified portion of the extension is isomorphic to Z/fZ.

For the totally tamely ramified portion of the extensions in cases 2− 4, it is necessary to
use a formula to count the non-isomorphic extensions. Since 3 - 10 we can use theorems in
subsection 5.1 to count all distinct extensions. Theorem 5.16 states that there are n distinct
degree n totally tamely ramified extensions. Theorem 5.17 tells us that for g = gcd(n, pf−1)
there are g non-isomorphic extensions of degree n. Thus we know that there is 1 extension
for case 1, gcd(32 − 1, 10) = 2 non-isomorphic extensions for case 2, gcd(35 − 1, 10) = 2
non-isomorphic extensions for case 3, and gcd(31 − 1, 10) = 2 non-isomorphic extensions for
case 4 for a total of 5 non-isomorphic extensions of degree 10 for p = 3. Theorem 5.17 also
states that for the totally tamely ramified portion of the extension, the defining polynomials
are in the form xn − ζrπ.

Now let us look at calculating the Galois group of a specific extension of case 2. Suppose
L/F3((T )) is a finite field extension and L is a degree 2 totally tamely ramified extension
of a degree 5 maximal unramified extension of F3((T )), Kur. Using methods described
in [6, p.587], we find that x5 − x + 1 is a defining polynomial for L/Kur. Consider the
polynomial x2 +Tx+T where T generates the maximal ideal in Kur. Then this polynomial
is Eisenstein and by Theorem 5.3, it generates a totally tamely ramified extension of degree
2. We can then use the properties of the ramification groups outlined in Theorem 3.2 to
find the Galois group for the extension L/F3((T )). We will discuss two different methods
of finding the Galois group for L/F3((T )) using the information from this theorem. The
first method is to use the online L-functions and Modular Forms Database (LMFDB). The
second technique is to use the GAP package in Sage to design a program for narrowing down
possibilities for the Galois group.

For the first method, we use LMFDB [1], which has a Galois group database that gives such
information as name, order, parity, solvability, and possible subfields for transitive subgroups
of Sn. All possible Galois groups are given labels of the form nTk. Here n signifies that the
Galois group is a subgroup of Sn and k serves as an index of transitive subgroups of Sn. In
our example, we know that the Galois group of L/K is a solvable subgroup of S10. Using
LMFDB we find that there are 24 such groups which satisfy this criterion. We also know
that our Galois group will have two subfields since we need a group G0/G1 to correspond
to the group of automorphisms of L/Kur. According to LMFDB, there are only five groups
with subfields. These possible Galois groups are:

Label Name Order Parity Solvable Subfields
10T1 C10 10 -1 Yes 2T1, 5T1
10T2 D5 10 -1 Yes 2T1, 5T2
10T3 D10 20 -1 Yes 2T1, 5T2
10T4 F5 20 -1 Yes 2T1, 5T3
10T5 F5 × C2 40 -1 Yes 2T1, 5T3
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Finally, we consider the fact that the unramified portion of the extension is isomorphic to
Z/5Z. Looking at the subfields, we find that 5T1 is isomorphic to Z/5Z and the only possible
Galois group with 5T1 as a subfield is 10T1, which is isomorphic to Z/10Z. Note that there is
additional data available from the LMFDB tables. In other cases, information such as order
and parity is necessary for determining the Galois group and is also necessary for using the
Galois groups to count the number of non-isomorphic extensions of a given degree.

A second method for determining the Galois group of an extension is to design a program
in Sage using the GAP database. Again we use Theorem 3.2 to give us information on
the possible Galois group for L/K. The main difference between this method and the first
one is that Sage provides different information than LMFDB. For example, while Sage will
not directly show the subfields, Sage can check the order of elements to see if a group is a
p-group. The first step, as in the first method, is to find solvable transitive subgroups of S10.
Again, we find that there are 24 of these. We also know that our Galois group will contain a
solvable subgroup, G0 such that G/G0 is isomorphic to Z/5Z. We find that there are three
such groups that fit this criteria: 10T1, 10T8, and 10T14. One final step is to check if there
is a G1 such that G0/G1 is isomorphic to Z/2Z. This narrows it down to only one possible
Galois group for L/K, 10T1, which is isomorphic to Z/10Z. This produced the same result
as the first method.

Below is the program we used to find the Galois group of L/K:

Set G to be the set of transitive subgroups of S10

Set a to be an empty list
for n in the range (1, cardinality of G plus 1) do

if G[n] is a solvable group then
Append n to the list a

end if
end for

Set L to be an empty list
for n in the list a do

Set G0 to be the set of normal subgroups of G[n]
for i in the range (1, cardinality of G0) do

if G0[i] is solvable and n is not in our list L then
Set G/G0 equal to the quotient group G[n]/G0[i]
if G/G0 is cyclic and has cardinality equal to 5 and n is not in the list L then

if G0[i] is cyclic and has cardinality equal to 2 then
Append n to the list L

end if
end if

end if
end for

end for
Print L

Both methods have their advantages and disadvantages. Each works only for classifying
low degree extensions. While LMFDB gives detailed information about Galois groups, the
possibilities must be examined by hand. Although programming in Sage is more efficient in
some cases, our program becomes significantly slower as the degree of the extension increases.
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In addition, the program may not be able to narrow the possibility down to a single Galois
group and may need case-by-case alterations.

Further research could focus on generalizing the results to count the number of non-
isomorphic tamely ramified extensions for a given degree regardless of the prime or for a
given prime regardless of the degree much in the same way as Jones and Roberts did for
extensions of Qp. In addition, it remains to extend our results for extensions of degree equal
to the characteristic of the field to extensions of degree equal to a power of the characteristic
of the field using Witt vectors.
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7. Notation

Here is an appendix of notation used throughout this paper.

Aut(E/F ) Automorphism group of the field E which fixes F
Gal(E/F ) Galois group of the Galois extension E/F
[E : F ] Degree of the field extension E/F
|G|, |x| Order of the group G or the element x respectively
| · |T The absolute value, or norm, for Fp((T ))
ν(·) The valuation in general and later, specifically for Fp((T ))
νp(·), νT (·) The valuation for the p-adic numbers, and for Fp((T )), respectively
TrL/K(·) The trace associated with the Galois extension L/K
OK Ring of integers of K
MK Maximal ideal of K
UK Group of units of K
k = O/M Residue field of K
e Ramification index
f Degree of the residue field
n Degree of the extension
Fp[T ] Polynomial ring over Fp
Fp[[T ]] Ring of formal power series over Fp
Fp((T )) Field of formal Laurent series over Fp
Gi The ith ramification group in G (Sec. 3)
Kur Maximal unramified extension of K (Sec. 4)
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